Kafka架构原理,也就这么回事!
本文主要讲解 Kafka 是什么、Kafka 的架构包括工作流程和存储机制,以及生产者和消费者。
图片来自 Pexels
最终大家会掌握 Kafka 中最重要的概念,分别是 Broker、Producer、Consumer、Consumer Group、Topic、Partition、Replica、Leader、Follower,这是学会和理解 Kafka 的基础和必备内容。
定义
Kafka 是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用与大数据实时处理领域。
消息队列
Kafka 本质上是一个 MQ(Message Queue),使用消息队列的好处?(面试会问)
解耦:允许我们独立的扩展或修改队列两边的处理过程。
可恢复性:即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
缓冲:有助于解决生产消息和消费消息的处理速度不一致的情况。
灵活性&峰值处理能力:不会因为突发的超负荷的请求而完全崩溃,消息队列能够使关键组件顶住突发的访问压力。
异步通信:消息队列允许用户把消息放入队列但不立即处理它。
发布/订阅模式
架构
Producer: 消息生产者,向 Kafka Broker 发消息的客户端。
Consumer:消息消费者,从 Kafka Broker 取消息的客户端。
Consumer Group:消费者组(CG),消费者组内每个消费者负责消费不同分区的数据,提高消费能力。一个分区只能由组内一个消费者消费,消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
Broker:一台 Kafka 机器就是一个 Broker。一个集群由多个 Broker 组成。一个 Broker 可以容纳多个 Topic。
Topic:可以理解为一个队列,Topic 将消息分类,生产者和消费者面向的是同一个 Topic。
Partition:为了实现扩展性,提高并发能力,一个非常大的 Topic 可以分布到多个 Broker (即服务器)上,一个 Topic 可以分为多个 Partition,每个 Partition 是一个 有序的队列。
Replica:副本,为实现备份的功能,保证集群中的某个节点发生故障时,该节点上的 Partition 数据不丢失,且 Kafka 仍然能够继续工作,Kafka 提供了副本机制,一个 Topic 的每个分区都有若干个副本,一个 Leader 和若干个 Follower。
Leader:每个分区多个副本的“主”副本,生产者发送数据的对象,以及消费者消费数据的对象,都是 Leader。
Follower:每个分区多个副本的“从”副本,实时从 Leader 中同步数据,保持和 Leader 数据的同步。Leader 发生故障时,某个 Follower 还会成为新的 Leader。
Offset:消费者消费的位置信息,监控数据消费到什么位置,当消费者挂掉再重新恢复的时候,可以从消费位置继续消费。
Zookeeper:Kafka 集群能够正常工作,需要依赖于 Zookeeper,Zookeeper 帮助 Kafka 存储和管理集群信息。
工作流程
Kafka集群将 Record 流存储在称为 Topic 的类别中,每个记录由一个键、一个值和一个时间戳组成。
发布和订阅记录流,类似于消息队列或企业消息传递系统。
以容错的持久方式存储记录流。
处理记录流。
存储机制
这些文件位于同一文件下,该文件夹的命名规则为:topic 名-分区号。例如,first 这个 topic 有三分分区,则其对应的文件夹为 first-0,first-1,first-2。
# ls /root/data/kafka/first-0
00000000000000009014.index
00000000000000009014.log
00000000000000009014.timeindex
00000000000000009014.snapshot
leader-epoch-checkpoint
index 和 log 文件以当前 Segment 的第一条消息的 Offset 命名。下图为 index 文件和 log 文件的结构示意图:
生产者
分区策略
分区原因:
方便在集群中扩展,每个 Partition 可以通过调整以适应它所在的机器,而一个 Topic 又可以有多个 Partition 组成,因此可以以 Partition 为单位读写了。
可以提高并发,因此可以以 Partition 为单位读写了。
分区原则:我们需要将 Producer 发送的数据封装成一个 ProducerRecord 对象。
该对象需要指定一些参数:
topic:string 类型,NotNull。
partition:int 类型,可选。
timestamp:long 类型,可选。
key:string 类型,可选。
value:string 类型,可选。
headers:array 类型,Nullable。
③既没有 Partition 有没有 Key 的情况下,第一次调用时随机生成一个整数(后面每次调用都在这个整数上自增),将这个值与可用的分区数取余,得到 Partition 值,也就是常说的 Round-Robin 轮询算法。
数据可靠性保证
①副本数据同步策略
②ISR
③ACK 应答机制
所以 Kafka 为用户提供了三种可靠性级别,用户根据可靠性和延迟的要求进行权衡,选择以下的配置。
Ack 参数配置:
0:Producer 不等待 Broker 的 ACK,这提供了最低延迟,Broker 一收到数据还没有写入磁盘就已经返回,当 Broker 故障时有可能丢失数据。
1:Producer 等待 Broker 的 ACK,Partition 的 Leader 落盘成功后返回 ACK,如果在 Follower 同步成功之前 Leader 故障,那么将会丢失数据。
-1(all):Producer 等待 Broker 的 ACK,Partition 的 Leader 和 Follower 全部落盘成功后才返回 ACK。但是在 Broker 发送 ACK 时,Leader 发生故障,则会造成数据重复。
④故障处理细节
Follower 故障:Follower 发生故障后会被临时踢出 ISR 集合,待该 Follower 恢复后,Follower 会 读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 Leader 进行同步数据操作。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
Exactly Once 语义
0.11 版本的 Kafka,引入了幂等性:Producer 不论向 Server 发送多少重复数据,Server 端都只会持久化一条。
At Least Once + 幂等性 = Exactly Once
消费者
消费方式
而 Pull 模式则可以根据 Consumer 的消费能力以适当的速率消费消息。Pull 模式不足之处是,如果 Kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。
分区分配策略
Kafka 有两种分配策略,一个是 RoundRobin,一个是 Range,默认为Range,当消费者组内消费者发生变化时,会触发分区分配策略(方法重新分配)。
将 A、B 主题的分区排序后分配给消费者组,TopicB 分区中的数据可能分配到 Consumer0 中。
②Range
但是,如下图所示,Consumer0、Consumer1 同时订阅了主题 A 和 B,可能造成消息分配不对等问题,当消费者组内订阅的主题越多,分区分配可能越不均衡。
Offset 的维护
Kafka 0.9 版本之前,Consumer 默认将 Offset 保存在 Zookeeper 中,从 0.9 版本开始,Consumer 默认将 Offset 保存在 Kafka 一个内置的 Topic 中,该 Topic 为 __consumer_offsets。
总结
作者:臧远慧
简介:就职于中科星图股份有限公司(北京),研发部后端技术组。个人擅长 Python/Java 开发,了解前端基础;熟练掌握 MySQL,MongoDB,了解 Redis;熟悉 Linux 开发环境,掌握 Shell 编程,有良好的 Git 源码管理习惯;精通 Nginx ,Flask、Swagger 开发框架;有 Docker+Kubernetes 云服务开发经验。对人工智能、云原生技术有较大的兴趣。
编辑:陶家龙
来源:https://juejin.im/post/5e217c3fe51d450200787f23
征稿:有投稿、寻求报道意向技术人请联络 editor@51cto.com
精彩文章推荐: